導數(shù)與中值定理_第1頁
已閱讀1頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、選擇1、設函數(shù)可導且下列極限均存在,則不成立的是()。??xfA、B、??????00lim0fxfxfx??????????0000limxfxxxfxfx????????C、D、??????afhafhafh?????2lim0??????00002limxfxxxfxxfx??????????2、設f(x)可導且下列極限均存在,則()成立.A、)(21)()2(lim0000xfxxfxxfx????????B、)0()0()(l

2、im0fxfxfx????C、)()()(lim0000xfxxfxxfx????????D、)()()2(lim0afhafhafh?????3、已知函數(shù)????????001)(xexxxfx,則f(x)在x=0處().①導數(shù)(0)1f???②間斷③導數(shù))0(f?=1④連續(xù)但不可導4、設,則=()。????????321????xxxxxf??0f?A、3B、C、6D、3?6?5、設,且,則=()。??xxxfln???20??xf

3、??0xfA、B、C、eD、1e22e6、設函數(shù),則在點x=1處()。???????1lnxxxf11??xx??xfA、連續(xù)但不可導B、連續(xù)且C、連續(xù)且D、不連續(xù)??11??f??01??f7、設函數(shù)在點x=0處()不成立。??????xxexfx00??xxA、可導B、連續(xù)C、可微D、連續(xù),不可異8、函數(shù)在點處連續(xù)是在該點處可導的()。??xf0xA、必要但不充分條件B、充分但不必要條件C、充要條件D、無關條件19、下列等式成立的是

4、()。xddxx1.A?????????2x1ddxx1.B??xcosdxdxsin.C?)1a0a(adaln1xda.Dxx???且20、D(sin2x)=()A、Cos2xDxB、–Cos2xDxC、2Cos2xDxD、–2Cos2xDx21、f(x)=ln|x|,Df(x)=()dxx.A1x1.Bx1.Cdxx1.D22、若,則xxf2)(?()???????????xfxfx00lim0A、0B、1C、ln2D、1ln22

5、3、曲線y=e2x在x=2處切線的斜率是()A、e4B、e2C、2e2D、224、曲線處的切線方程是()11???xxy在232xy.A??232xy.B??232xy.C???232xy.D???25、曲線22yxx??上切線平行于x軸的點是().A、(00)B、(11)C、(–11)D、(11)(四)中值定理與導數(shù)的應用1、下列函數(shù)在給定區(qū)間上不滿足拉格朗日定理的有()。A、B、xy???21?15423????xxxy??10C、

6、D、??21lnxy????30212xxy????11?2、函數(shù)在其定義域內()。23???xxyA、單調減少B、單調增加C、圖形下凹D、圖形上凹3、下列函數(shù)在指定區(qū)間上單調增加的是()()????AsinxBexCx2D3x4、下列結論中正確的有()。A、如果點是函數(shù)的極值點,則有=0;0x??xf??0xf?B、如果=0,則點必是函數(shù)的極值點;??0xf?0x??xfC、如果點是函數(shù)的極值點,且存在,則必有=0;0x??xf??0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論