新課標高三數學第一輪復習單元講座第36講 空間向量及其應用_第1頁
已閱讀1頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、第1頁共10頁普通高中課程標準實驗教科書—數學[人教版]高三新高三新數學數學第一輪復習教案(講座第一輪復習教案(講座36)—空間向量及其應用空間向量及其應用一課標要求:一課標要求:(1)空間向量及其運算①經歷向量及其運算由平面向空間推廣的過程;②了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標表示;③掌握空間向量的線性運算及其坐標表示;④掌握空間向量的數量積及其坐標表示,能運用向量的數量積判斷向量的共線

2、與垂直。(2)空間向量的應用①理解直線的方向向量與平面的法向量;②能用向量語言表述線線、線面、面面的垂直、平行關系;③能用向量方法證明有關線、面位置關系的一些定理(包括三垂線定理);④能用向量方法解決線線、線面、面面的夾角的計算問題,體會向量方法在研究幾何問題中的作用。二命題走向二命題走向本講內容主要涉及空間向量的坐標及運算、空間向量的應用。本講是立體幾何的核心內容,高考對本講的考察形式為:以客觀題形式考察空間向量的概念和運算,結合主觀

3、題借助空間向量求夾角和距離。預測07年高考對本講內容的考查將側重于向量的應用,尤其是求夾角、求距離,教材上淡化了利用空間關系找角、找距離這方面的講解,加大了向量的應用,因此作為立體幾何解答題,用向量法處理角和距離將是主要方法,在復習時應加大這方面的訓練力度。三要點精講三要點精講1空間向量的概念向量:在空間,我們把具有大小和方向的量叫做向量。如位移、速度、力等。相等向量:長度相等且方向相同的向量叫做相等向量。表示方法:用有向線段表示,并且

4、同向且等長的有向線段表示同一向量或相等的向量。說明:①由相等向量的概念可知,一個向量在空間平移到任何位置,仍與原來的向量相等,用同向且等長的有向線段表示;②平面向量僅限于研究同一平面內的平移,而空間向量研究的是空間的平移。2向量運算和運算率baABOAOB??????baOBOABA??????)(RaOP?????第3頁共10頁共面向量:我們把平行于同一平面的向量叫做共面向量。共面向量定理如果兩個向量、不共線,則向量與向量、共面的充要

5、條a?b?p?a?b?件是存在實數對x、y,使①.byaxp?????注:與共線向量定理一樣,此定理包含性質和判定兩個方面。推論:空間一點P位于平面MAB內的充要條件是存在有序實數對x、y,使④MByMAxMP??或對空間任一定點O,有⑤.MByMAxOMOP???在平面MAB內,點P對應的實數對(xy)是唯一的。①式叫做平面MAB的向量表示式。又∵代入⑤,整理得.OMOAMA??.OMOBMB??⑥.)1(OByOAxOMyxOP??

6、???由于對于空間任意一點P,只要滿足等式④、⑤、⑥之一(它們只是形式不同的同一等式),點P就在平面MAB內;對于平面MAB內的任意一點P,都滿足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共線的兩個向量、(或不共線三點MAMBM、A、B)確定的空間平面的向量參數方程,也是M、A、B、P四點共面的充要條件。5空間向量基本定理:如果三個向量、、不共面,那么對空間任一向量,a?b?c?存在一個唯一的有序實數組xyz使.czbyaxp?????

7、??說明:⑴由上述定理知,如果三個向量、、不共面,那么所有空間向量所組a?b?c?成的集合就是,這個集合可看作由向量、、生??Rzyxczbyaxpp????、、|?????a?b?c?成的,所以我們把,,叫做空間的一個基底,,,都叫做基向量;⑵空a?b?c?a?b?c?間任意三個不共面向量都可以作為空間向量的一個基底;⑶一個基底是指一個向量組,一個基向量是指基底中的某一個向量,二者是相關聯(lián)的不同的概念;⑷由于可視為與0?任意非零向量共

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論