時滯耦合生物系統(tǒng)模型的穩(wěn)定性分析.pdf_第1頁
已閱讀1頁,還剩67頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、本文利用時滯微分方程的基本理論、Hopf分支理論、對稱局部Hopf分支定理,針對三類時滯耦合捕食與被捕食系統(tǒng),通過對其特征方程根分布的討論,得到該時滯微分方程的局部穩(wěn)定性,Hopf分支的存在性,進而分析整個系統(tǒng)的性質(zhì)。主要工作如下:
   第三部分,介紹了一類三維環(huán)狀耦合時滯volterra模型。利用時滯微分方程理論,給出了平衡點的存在條件,通過分支理論給出了多重周期解的分支性,其中群對稱性是系統(tǒng)產(chǎn)生多重周期解的一個重要條件。利

2、用對稱群理論研究了模型的鎖相周期解的分支性及性質(zhì)。最后,借助Matlab軟件對其結(jié)論進行了數(shù)值仿真。
   第四部分,考慮了一類三維時滯受感染的捕食與被捕食系統(tǒng)。通過在原有的三維受感染的捕食與被捕食系統(tǒng)中引入了合適的滯量,得到一類三維時滯受感染的捕食與被捕食系統(tǒng)的模型。利用時滯微分方程理論,研究了模型在不同平衡點處的穩(wěn)定性,根據(jù)Rouche定理得出產(chǎn)生Hopf分支的條件,進而分析整個系統(tǒng)的性質(zhì)。得到當參數(shù)經(jīng)過一系列臨界值時,局部

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論