改變學生學習方式的關鍵是改善教師的教學行為_第1頁
已閱讀1頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1改變學生學習方式的關鍵是改善教師的教學行為改變學生學習方式的關鍵是改善教師的教學行為——我對數(shù)學教學的一些認識(發(fā)言稿)我對數(shù)學教學的一些認識(發(fā)言稿)陶維林陶維林我是1968年開始當教師的,至今已37年了。教了這么多年書總會有些想法,下面把我對數(shù)學教學的體會、對數(shù)學教學的理解向老師們做一個匯報。諸多不當之處,敬請諒解或批評?!罢n改”的關鍵是改變學生的學習行為,而關鍵的關鍵是改善教師的教學行為。沒有教師教學行為的改善,不可能有學生學習

2、行為的改變。一不要培養(yǎng)恨數(shù)學的人,讓學生喜歡你的課我經常這樣告戒自己。我以為,是數(shù)學教師使學生恨數(shù)學的。我收集到了一些證據(jù)。有一些題目很刁鉆,考細枝末節(jié),犄角旮旯,考技巧。比如:1設f(x)=的最大值是M,最小值是m,求M+m。2sin(xπ4)2x2x2x2cosx2f(x)是(0,+∞)上的減函數(shù),f(4))=1f(x+y)≤1,求x2+y2+2x+2y的最小值。這些題目都是高手想出來的。最近,一個高一學生來問我一道題:“求y=lo

3、g2(2x2-3x+1)的單調區(qū)間?!彼f,老師在課上講了,還是沒聽懂。我問她,老師在這之前還講過類似于這樣的題嗎?她說:沒有。在學生初學函數(shù)、對數(shù)函數(shù),沒有學習過一元二次不等式的情況下老師講這樣的題,結果只能促使學生對數(shù)學產生畏懼心理,挫傷了學生學習數(shù)學的積極性。一份試卷的均分不及格,教師又做了一次動員學生恨數(shù)學的事。到底是誰不及格?教之道在于度!如果由于我的教學使學生恨數(shù)學了,那我一輩子都干了些什么?多教一個學生,這個世界上就多一個

4、恨數(shù)學的人,少教一個學生,這個世界上就少一個恨數(shù)學的人。人生的價值成了什么?你喜歡數(shù)學嗎?你不喜歡數(shù)學就無法讓學生喜歡數(shù)學。如果你喜歡數(shù)學,那為什么要把學生弄得恨數(shù)學呢?讓學生喜歡你的課,盼著你這個老師來上課,應該成為我們的追求。去年,畢業(yè)20年回學校的一個校友對我說,是你教數(shù)學使我喜歡上了數(shù)學。怎樣讓學生對你的教學感興趣?例1勾股樹——勾股定理的教學。例2一個軌跡問題——橢圓概念的運用。創(chuàng)設有利于引起學生興趣的情境,改變教學內容的呈現(xiàn)

5、方式;邏輯性強的問題可以引發(fā)求知心理(如統(tǒng)計內容的邏輯性);讓學生感受到所學內容的必要性(如概念產生的必要性);通過矛盾引發(fā)認知沖突(虛數(shù)的產生);一些具有挑戰(zhàn)性的問題常常讓人欲罷不能(一張紙如果折疊100次該多厚);設置懸念,讓學生先猜一猜,想一想,不要輕易“捅破窗戶紙”(轉動的正方形)等等。學生對你教的這門課有興趣,課后就樂意做課外練習、看課外書、思考與這門課有關的問題,3下面的一些教學行為是需要改善的。搶學生的話頭,打斷學生的發(fā)言

6、,代替學生講,代替學生寫,代替學生想。剝奪學生鍛煉的機會。不愿留給學生思考的時間。學生的觀察、思考尚未開始(或者剛剛開始),教師就開始提問,或者自己“分析”起來。學生講,教師寫,當學生的“秘書”。為什么不讓學生自己講,自己寫。即便暫時不會,寫不出來,那就待會寫的時候再來寫。要多讓學生發(fā)表意見,在關鍵點上讓學生有機會提出自己的見解。教師多聽少講,參與到學生的活動中去。學習是一個循序漸進的過程,從初步了解,到理解,到掌握,到運用,到靈活運用

7、有一個比較長的過程。初學階段,就要求會做綜合性強的題,不妥,也沒有必要。而初學階段就對能力要求過高,對知識運用的要求過高是普遍現(xiàn)象。(如剛學習過對數(shù)函數(shù)就要求學生做“求y=log2(x2-3x+1)的單調區(qū)間”這樣的題目。)當學生做不出來的時候教師總是埋怨學生,卻不主動檢查自己。那能“一口吃成了胖子”,“一鍬挖個井”?比如,這樣的題目“求證函數(shù)f(x)=-x3+1單調減”不會做,就不能完全認為是函數(shù)的單調性學得不好??ㄔ趯-x的因式分

8、解以及對代數(shù)式x+x1x2+x的變形以說明它是正數(shù)的處13231222理上。集合部分的教學4個課時是夠的(我只用了4個課時)。許多老師都跟我說“課時不夠”,我以為其中一個原因就是,以集合為載體增加了許多東西(解一元二次不等式,或者解分式不等式,比較復雜的帶參數(shù)問題的討論等等,集合成了個“面子”),或者用于說明集合概念、運算的問題背景太復雜。高一初學集合時沒這個必要。弗賴登塔爾認為,數(shù)學教育方法的核心是學生的再創(chuàng)造。教師應該創(chuàng)造合適的條件

9、,讓學生在學習數(shù)學的過程中,用自己的體驗,用自己的思維方式,重新創(chuàng)造有關的數(shù)學知識。奧蘇伯爾認為,學生有意義的接受學習,并不是將現(xiàn)成知識簡單地“登記”到原有認知結構中去,而是要經過一系列的積極的思維活動。因此,有意義接受學習是一個主動的過程??梢?,有意義的學習不是一個被動接受知識、強化儲存的過程,而是用原有知識處理各項新的學習任務,通過“同化”和“順應”等心理活動和變化,不斷地構建和完善認知結構的過程。三必須培養(yǎng)學生主動學習的習慣我們學

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論